Surface Modification of GdMn2O5 for Catalytic Oxidation of Benzene via a Mild A-Site Sacrificial Strategy

Author:

Gao Ju,Dong Xu,Li Zhenguo,Shao Yuankai,Ren Xiaoning,Li Kaixiang,Lu Yiren

Abstract

Thermal catalytic oxidation technology is an effective way to eliminate refractory volatile organic pollutants, such as Benzene. Nevertheless, a high reaction temperature is usually an obstacle to practical application. Here, GdMn2O5 mullite (GMO-H) catalyst with disordered surface Gd-deficient and oxygen-vacancy-rich concentrations was synthesized via a controllable low-temperature acid-etching route. Results show that the preferentially broken Gd-O bond is conducive to exposing more Mn-Mn active sites, which Gd species covered. The affluent surface oxygen vacancies supply sufficient adsorption sites for oxygen molecules, facilitating the oxygen cycles during Benzene catalytic oxidation. Furthermore, surface exposed Mn3+ species were oxidized to Mn4+, which is beneficial to increase catalytic activity at a lower temperature. Compared with the conventional GdMn2O5, the reaction temperature for removing 90% Benzene over GMO-H was dropped from 405 to 310 °C with WHSV of 30,000 mL g−1 h−1. Significantly, during a 72 h catalytic test, the catalytic activity remains constant at 90% of the Benzene removal at 300 °C, indicating excellent activity stability. This work reported an efficient approach to preparing manganese-base mullite thermal catalyst, providing insight into the catalytic oxidation of Benzene.

Funder

Tianjin Science and Technology Commission

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3