In Situ Removal of Benzene as a Biomass Tar Model Compound Employing Hematite Oxygen Carrier

Author:

Huang Zhen,Wang Yonghao,Dong Nanhang,Song Da,Lin YanORCID,Deng Lisheng,Huang Hongyu

Abstract

Tar is an unavoidable biomass gasification byproduct. Tar formation reduces gasification efficiency and limits the further application of biomass gasification technology. Hence, efficient tar removal is a major problem to be solved in the formation and application of biomass gasification technology. Chemical looping gasification (CLG), a novel and promising gasification technology has attracted extensive attention owing to its low tar generation. Active oxygen carriers (OCs), the reduced OC in CLG, are considered to be excellent catalysts for tar cracking. In this study, the use of benzene as a typical tar model compound for tar removal using the iron ore OC is investigated. In the blank experiment, where an inert material (SiO2) is used as the carrier, the benzene cracking is relatively low, and the benzene conversion, H2 yield, and carbon conversion are 53.65%, 6.33%, and 1.24%, respectively. The addition of hematite promotes benzene cracking. A large amount of oxygen-containing gases (CO and CO2) are generated. Additionally, the conversion degrees for benzene, H2 and carbon are about 67.75%, 21.55%, and 38.39%, respectively. These results indicate that hematite performs both oxidation and catalysis during benzene cracking. The extension of the residence time facilitates benzene removal, owing to the good interaction between the gas phase and solid phase. The addition of water vapor inhibits the benzene conversion and promotes the conversion of carbon deposition. The lattice oxygen reactivity of hematite OC shows an uptrend as the cycle number is increased during the benzene conversion cycle. The experimental results confirm that CLG has a low-tar advantage and that hematite is an effective OC for benzene removal.

Funder

the National Natural Science Foundation of China

the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3