Effect of Different Zeolite Supports on the Catalytic Behavior of Platinum Nanoparticles in Cyclohexene Hydrogenation Reaction

Author:

Hamdy Mohamed S.ORCID,Alqahtani Fatimah A.,Shkir MohdORCID,Fawy Khaled F.,Benaissa MhamedORCID,Hamida Mohamed Bechir BenORCID,Elboughdiri NoureddineORCID

Abstract

In this study, 1 wt% platinum (Pt) nanoparticles were incorporated into five types of zeolites (HY, Beta, mordenite, ZSM-5, and ferrierite) with an impregnation technique. The synthesis strategy included the use of water as a solvent for the applied Pt source. Moreover, the incorporation process was performed at ambient conditions followed by calcination at 450 °C. The five prepared materials were characterized by different physical and chemical characterization techniques and the obtained results confirmed the formation of Pt nanoparticles with an average size of 5–10 nm. The catalytic performance of the prepared materials was evaluated in the hydrogenation of cyclohexene under a solvent-free system at room temperature. Pt nanoparticles supported on ZSM-5 zeolite exhibited the best catalytic performance. Moreover, the optimization of operational conditions such as temperature, pressure, and catalyst amount was investigated and the obtained results showed the possibility to convert 100% of cyclohexene within 35 min over Pt-ZSM-5. Finally, the reusability of the Pt-ZSM-5 catalyst was investigated in four consecutive runs without treatment and the obtained results showed a negligible activity loss.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3