A Theoretical and Experimental Approach to the Analysis of Hydrogen Generation and Thermodynamic Behavior in an In Situ Heavy Oil Upgrading Process Using Oil-Based Nanofluids

Author:

Medina Oscar E.ORCID,Céspedes SantiagoORCID,Zabala Richard D.ORCID,Franco Carlos A.,Pérez-Cadenas Agustín F.ORCID,Carrasco-Marín FranciscoORCID,Lopera Sergio H.,Cortés Farid B.ORCID,Franco Camilo A.ORCID

Abstract

This study aims to show a theoretical and experimental approach to the analysis of hydrogen generation and its thermodynamic behavior in an in situ upgrading process of heavy crude oil using nanotechnology. Two nanoparticles of different chemical natures (ceria and alumina) were evaluated in asphaltene adsorption/decomposition under a steam atmosphere. Then, a nanofluid containing 500 mg·L−1 of the best-performing nanoparticles on a light hydrocarbon was formulated and injected in a dispersed form in the steam stream during steam injection recovery tests of two Colombian heavy crude oils (HO1 and HO2). The nanoparticles increased the oil recovery by 27% and 39% for HO1 and HO2 regarding the steam injection. The oil recovery at the end of the displacement test was 85% and 91% for HO1 and HO2, respectively. The recovered crude oil showed an increment in API° gravity from 12.4° and 12.1° to 18.5° and 29.2° for HO1 and HO2, respectively. Other properties, such as viscosity and content of asphaltenes and resins with high molecular weight, were positively modified in both crude oils. The fugacity of H2 was determined between the reservoir and overburden pressure and different temperatures, which were determined by the thermal profiles in the displacement test. The fugacity was calculated using the application of virial equations of state with mixing rules based on the possible intermolecular interactions between the components. Hydrogen acquired a higher chemical potential via nanoparticle presence. However, the difference in H2 fugacity between both points is much higher with nanoparticles, which means that hydrogen presents a lower tendency to migrate by diffusion to the high-pressure point. The difference between HO1 and HO2 lies mainly in the fact that the pressure difference between the reservoir and the overburden pressure is greater in HO2; therefore, the difference in fugacity is greater when the pressure differential is greater.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference78 articles.

1. An overview of hydrogen production technologies;Catal. Today,2009

2. Global temperature change;Proc. Natl. Acad. Sci. USA,2006

3. Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon;Clean Technol.,2021

4. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass;Chem. Rev.,2007

5. Economic analysis of hydrogen production from variable renewables;IEEJ Energy J.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3