Abstract
Wastewaters of the textile industry, e.g., those generated in Gresik, Indonesia, are a possible threat to the environment and should be treated before disposal. Photodegradation is a more promising method to overcome this problem than conventional methods such as biodegradation. ZnO is widely used for photodegradation due to its unique physical and chemical properties and stability. In this study, Ag was loaded onto ZnO, which is non-toxic and inexpensive, can improve the electron–hole separation, and has a significant catalytic potential. Pristine ZnO and ZnO-Ag nanoparticles were fabricated by an ultrasonic spray pyrolysis system at different Ag contents (1, 5, and 10 wt%). The carrier gas ratio (O2:N2) was also changed (1:0, 1:2, 1:1, 2:1, and 0:1) to examine its effects on the nanoparticle characteristics. The nanoparticle characteristics were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer, Emmett, and Teller (BET) specific surface area. The results were interpreted in relation to photodegradation under UV light irradiation. An increase in the ZnO-Ag activity compared with pristine ZnO was observed at a carrier gas ratio of 0:1 with reaction rate constants of 0.0059 and 0.0025 min−1, respectively.
Funder
DRPM Kementrian Pendidikan, Kebudayaan, Riset dan Teknologi Indonesia
Japan Society for the Promotion of Science
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献