Durable and Versatile Immobilized Carbonic Anhydrase on Textile Structured Packing for CO2 Capture

Author:

Shen JialongORCID,Yuan Yue,Salmon SonjaORCID

Abstract

High-performance carbon dioxide (CO2)-capture technologies with low environmental impact are necessary to combat the current climate change crisis. Durable and versatile “drop-in-ready” textile structured packings with covalently immobilized carbonic anhydrase (CA) were created as efficient, easy to handle catalysts for CO2 absorption in benign solvents. The hydrophilic textile structure itself contributed high surface area and superior liquid transport properties to promote gas-liquid reactions that were further enhanced by the presence of CA, leading to excellent CO2 absorption efficiencies in lab-scale tests. Mechanistic investigations revealed that CO2 capture efficiency depended primarily on immobilized enzymes at or near the surface, whereas polymer entrapped enzymes were more protected from external stressors than those exposed at the surface, providing strategies to optimize performance and durability. Textile packing with covalently attached enzyme aggregates retained 100% of the initial 66.7% CO2 capture efficiency over 71-day longevity testing and retained 85% of the initial capture efficiency after 1-year of ambient dry storage. Subsequent stable performance in a 500 h continuous liquid flow scrubber test emphasized the material robustness. Biocatalytic textile packings performed well with different desirable solvents and across wide CO2 concentration ranges that are critical for CO2 capture from coal and natural gas-fired power plants, from natural gas and biogas for fuel upgrading, and directly from air.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference94 articles.

1. The Lifetime of Excess Atmospheric Carbon Dioxide;Global Biogeochem. Cycles,1994

2. High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present;Nature,2008

3. Global Carbon Budget 2020;Earth Syst. Sci. Data,2020

4. Climate Tipping Points—Too Risky to Bet Against;Nature,2019

5. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Proceedings of the IPCC, Climate Change 2021: The Physical Science Basis, Cambridge University Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3