On Stability of High-Surface-Area Al2O3, TiO2, SiO2-Al2O3, and Activated Carbon Supports during Preparation of NiMo Sulfide Catalysts for Parallel Deoxygenation of Octanoic Acid and Hydrodesulfurization of 1-Benzothiophene

Author:

Kaluža LuděkORCID,Soukup KarelORCID,Koštejn Martin,Karban JindřichORCID,Palcheva Radostina,Laube Marek,Gulková Daniela

Abstract

NiMo sulfide catalysts were prepared by the impregnation of high surface area supports with an aqueous solution made of NiCO3·2Ni(OH)2, MoO3 and citric acid, followed by freeze drying and sulfidation in H2S/H2 mixture. N2 physisorption and X-ray diffraction were selected to investigate the amphoteric oxides Al2O3 and TiO2, acidic SiO2-Al2O3 and activated carbon supports, fresh prepared sulfide NiMo catalysts and spent catalysts after model parallel reaction of octanoic acid deoxygenation and 1-benzothiophene hydrodesulfurization. The studied mesoporous amphoteric oxides Al2O3 and TiO2 did not lead to highly active NiMo catalysts due to the low hydrothermal stability of these supports during the preparation of the active sulfide phase and deoxygenation reaction. The most active catalyst based on oxidic support was the NiMo sulfide supported on acidic mesoporous SiO2-Al2O3, which was explained by the increased stability of this support to the water and CO/CO2 mixture during the activation of the sulfidic phase and deoxygenation reaction. The extraordinarily high stability of the activated carbon support led to outstanding activities of the sulfidic NiMo/C catalyst.

Funder

Czech Science Foundation

Technology Agency of the Czech Republic

CAS-BAS

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference56 articles.

1. Catalytic hydrodeoxygenation;Furimsky;Appl. Catal. A,2000

2. A review of catalytic upgrading of bio-oil to engine fuels;Mortensen;Appl. Catal. A,2011

3. Hydroprocessing challenges in biofuels production;Furimsky;Catal. Today,2013

4. Hydrodeoxygenation of phenol over hydrotreatment catalysts in their reduced and sulfided states;Platanitis;Open Catal. J.,2014

5. Hydrogenation of Model Compounds Catalyzed by MCM-41-Supported Nickel Phosphide;Xia;Adv. Mater. Res.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3