Abstract
In this study, the Ni/KIT-6 and Ce/KIT-6 materials were prepared through the impregnation method and then amino-functionalized materials were obtained by the grafting of an amino-silane coupling agent 3-aminopropyl triethoxysilane (APTES). The samples were characterized by thermogravimetric analysis (TGA-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscopy (SEM) and nitrogen adsorption at 77 K. The study of CO2 adsorption–desorption on prepared materials was investigated using thermogravimetric analysis (TGA-DTA) coupled with mass spectrometry (MS). The influence of metal oxides on the performance of CO2 adsorption on functionalized mesoporous silica was presented. The results showed that doping the molecular sieve with cerium oxide can significantly increase the adsorption capacity of the amino-functionalized KIT-6. As the CO2 adsorbents were prepared by functionalization through grafting with APTES, the amount of amine loading is one of the important factors which improves CO2 adsorption capacity. Additionally, CO2 adsorption performance depends on the textural properties and the temperature used for the adsorption process. The maximum adsorption capacity of Ce/KIT-6 Sil is 3.66 mmol/g, which is 2.4 times higher than Ni/KIT-6 Sil. After the nine cycles of cyclic CO2 adsorption/desorption, the Ce/KIT-6 Sil still had higher adsorption capacities, indicating their good cyclical stability.
Funder
Romanian Academy Project No. 4.3
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献