Conversion of Sugarcane Trash to Nanocrystalline Cellulose and its Life Cycle Assessment

Author:

Wibowo Agung,Chiarasumran Nutchapon,Thanapimmetha Anusith,Saisriyoot Maythee,Srinophakun Penjit,Suriyachai Nopparat,Champreda Verawat

Abstract

Sugarcane trash (SCT) is a promising, underutilized raw material for producing value-added bio-based materials. Nanocrystalline cellulose (NCC) production conditions were obtained from the experiment. On the other hand, bioethanol production conditions were retrieved from the secondary data. This study compared the environmental impact of SCT in NCC production to that of bioethanol. For NCC production, SCT was subjected to organosolv pretreatment (140, 160, or 180 °C) in a mixed solvent system (methyl isobutyl ketone (MIBK), ethanol, and water), bleached, and then hydrolyzed with different concentrations of sulfuric acid (50 and 58%) for varying times. Organosolv pretreatment at 180 °C removed 98.24 and 81.15% of the hemicellulose and lignin, respectively, resulting in 73.51 and 79.72% cellulose purity and recovery. In addition, bleaching increased the cellulose purity to 95.42%. Field Emission Transmission Electron Microscopy (FE-TEM) analysis showed that NCC’s small 2:1 elliptical particles were found at the hydrolysis of 50% H2SO4 for 45 min. The X-ray diffraction (XRD) pattern revealed 70% crystalline index values for NCC obtained from 50% H2SO4 with 45 min retention times. Then, the optimum conditions of NCC production were used for LCA analysis (Sigmapro software). The analysis included global warming, marine ecotoxicity, fresh water, and human carcinogenic toxicity. NCC production’s electricity consumption (freeze-dried step) was the highest environmental impact on LCA analysis.

Funder

National Science and Technology Development Agency

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3