Hydrogenolysis of Lignin and C–O Linkages Containing Lignin-Related Compounds over an Amorphous CoRuP/SiO2 Catalyst

Author:

Huang Liang-Qiu,Diao Zhi-Jun,Chen Bo,Du Qing-Pan,Duan Kai-Yang,Zhao Si-Jia

Abstract

Efficient depolymerization of C–O linkages is essential for converting lignin into fuels and higher value-added chemicals. In this work, CoRuP/SiO2, an amorphous Ru-Co phosphide composite, was fabricated for the efficient hydrogenolysis of ether linkages. The 4–O–5 and α–O–4 linkages containing lignin-related compounds, such as diphenyl ether, benzyl phenyl ether, 3-methyl diphenyl ether, and dibenzyl ether, are selected as representatives of linkages in lignin. Under mild conditions, Ru-containing metallic phosphides have high-performance for the catalytic depolymerization of C–O linkages. Compared with other catalysts, CoRuP/SiO2 shows an outstanding selectivity for benzene and excellent efficiency in depolymerizing diphenyl ethers, yielding only a small amount of by-products. Furthermore, the total acidity shows a linear relationship with the hydrogenolysis reactivity in cleaving aromatic ether bonds. The mechanisms for the catalytic hydrogenolysis of 4–O–5 and α–O–4 bonds over CoRuP/SiO2 are proposed. Moreover, two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopic analysis demonstrates that CoRuP/SiO2 could effectively depolymerize C–O bonds of lignin. These dominant hydrogenolysis products from lignin have excellent potential in the production of high value-added drugs or pharmaceutical intermediates. The hydrogenolysis of lignin can be a highly efficient alternative to the existing method of lignin utilization.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering

China Postdoctoral Science Foundation

Special Research Foundation of Education Bureau of Shaanxi Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3