Abstract
Syngas has been utilized in the production of chemicals and fuels, as well as in the creation of electricity. Feedstock impurities, such as nitrogen, sulfur, chlorine, and ash, in syngas have a negative impact on downstream processes. Fischer–Tropsch synthesis is a process that relies heavily on temperature to increase the production of liquid fuels (FTS). In this study, waste biomass converted into activated carbon and then a carbon-supported iron-based catalyst was prepared. The catalyst at 200 °C and 350 °C was used to investigate the influence of temperature on the subsequent application of syngas to liquid fuels. Potassium (K) was used as a structural promoter in the Fe-C catalyst to boost catalyst activity and structural stability (Fe-C-K). Low temperatures (200 °C) cause 60% and 80% of diesel generation, respectively, without and with potassium promoter. At high temperatures (350 °C), the amount of gasoline produced is 36% without potassium promoter, and 72% with promoter. Iron carbon-supported catalysts with potassium promoter increase gasoline conversion from 36.4% (Fe-C) to 72.5% (Fe-C-K), and diesel conversion from 60.8% (Fe-C) to 80.0% (Fe-C-K). As seen by SEM pictures, iron particles with potassium promoter were found to be equally distributed on the surface of activated carbon.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献