Biodesulfurization of Dibenzothiophene by Decorating Rhodococcus erythropolis IGTS8 Using Montmorillonite/Graphitic Carbon Nitride

Author:

Hasanbeik Nika Yavani,Pourmadadi MehrabORCID,Ghadami Azam,Yazdian Fatemeh,Rahdar AbbasORCID,Kyzas George Z.ORCID

Abstract

Fossil fuels are the main sources of human energy, but their combustion releases toxic compounds of sulfur oxide. In the oil industry, using the optimal methods to eliminate sulfur compounds from fossil fuels is a very important issue. In this study, the performance of montmorillonite/graphitic carbon nitride (a new hybrid nanostructure) in increasing the biodesulfurization activity of Rhodococcus erythropolis IGTS8 was investigated. X-ray diffraction, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy were used for the characterization of the nanoparticles. The effective factors in this process were determined. Optimum conditions for microorganisms were designed using the Design Expert software. Experiments were performed in a flask. The results indicated that the biodesulfurization activity of a microorganism in the presence of the nanostructure increases by 52%. In addition, in the presence of the nanostructure, the effective factors are: 1. concentration of the nanostructure; 2. concentration of sulfur; 3. cell concentration. In the absence of the nanostructure, the only effective factor is the concentration of sulfur. Through analysis of variance, the proposed models were presented to determine the concentration of the 2-hydroxy biphenyl produced by the microorganisms (biodesulfurization activity) in the presence and absence of the nanostructure. The proposed models were highly acceptable and consistent with experimental data. The results of a Gibbs assay showed that the biodesulfurization efficiency of in the presence of the nanostructure was increased by about 52%, which is a very satisfactory result. The biodesulfurization activity of decorated cells in a bioreactor showed a significant increase compared with nondecorated cells. Almost a two-fold improvement in biodesulfurization activity was obtained for decorated cells compared with free cells.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3