Ceramic Papers as Structured Catalysts: Preparation and Application for Particulate Removal

Author:

Leonardi Sabrina A.,Miró Eduardo E.,Milt Viviana G.ORCID

Abstract

Fibers represent a type of structure of great interest in catalysis since they combine high area to volume ratio and can be fabricated from many types of materials, such as ceramic oxides, polymers, and alloys. They can be used in isolated form or structured, as in the case of the ceramic papers synthesized in this work, following a modified papermaking technique. The addition of cationic and anionic polyelectrolytes improved the retention of ceramic fibers during the ceramic paper formation stage by adsorption processes, through the formation of floccules. In the complex aqueous system containing charged macromolecules, the amounts of polyelectrolytes to be added were determined by titrations. To enhance mechanical properties of ceramic papers, different classes of nanoparticle suspensions can be used as binders. As a novel alternative, we have used different borate-type compounds. Among them, we selected natural ulexite, which was purified and used as a binder of ceramic fibers. In order to improve mechanical resistance and flexibility, measured from tensile indexes and elastic module, the amounts of NaCaB5O6(OH)6.5H2O and the calcination temperature were varied. In this contribution, to take advantage of the unique characteristics of the ulexite-containing ceramic papers, they were impregnated with Co,Ce and Co,Ba,K and tested for diesel soot combustion.

Funder

Agencia Nacional de Promoción Científica y Tecnológica

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3