Recent Developments in Activated Carbon Catalysts Based on Pore Size Regulation in the Application of Catalytic Ozonation

Author:

Yang Jin,Fu Liya,Wu Fachao,Chen Xingxing,Wu ChangyongORCID,Wang Qibao

Abstract

Due to its highly developed pore structure and large specific surface area, activated carbon is often used as a catalyst or catalyst carrier in catalytic ozonation. Although the pore structure of activated carbon plays a significant role in the treatment of wastewater and the mass transfer of ozone molecules, the effect is complicated and unclear. Because different application scenarios require catalysts with different pore structures, catalysts with appropriate pore structure characteristics should be developed. In this review, we systematically summarized the current adjustment methods for the pore structure of activated carbon, including raw material, carbonization, activation, modification, and loading. Then, based on the brief introduction of the application of activated carbon in catalytic ozonation, the effects of pore structure on catalytic ozonation and mass transfer are reviewed. Furthermore, we proposed that the effect of pore structure is mainly to provide catalytic active sites, promote free radical generation, and reduce mass transfer resistance. Therefore, large external surface area and reasonable pore size distribution are conducive to catalytic ozonation and mass transfer.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3