Increased Light Olefin Production by Sequential Dehydrogenation and Cracking Reactions

Author:

Zhang XiaoqiaoORCID,Gong Jianhong,Wei Xiaoli,Liu Lingtao

Abstract

In this study, a sequential reaction using selected metal oxides, followed by ZSM-5-based catalysts, was employed to demonstrate a promising route for enhancing light olefin production in the catalytic cracking of naphtha. The rationale for the reaction is based on the induction of alkenes into hydrocarbon feeds prior to cracking. The optimum olefin induction was achieved by carefully optimizing the dehydrogenation active sites Mo/Al2O3 catalyst. The formed alkenes have a lower activation energy for C-H/C-C bond breaking compared to alkanes. This could accelerate the formation of carbenium ions, thus promoting the conversion of n-octane to produce light olefins. Detailed product distribution and DFT calculation indicated a remarkable increase in ethylene and propylene production in the final product through a modified reaction pathway. Compared with the common metal-promoted zeolite catalysts, the new route could avoid the block of zeolite channels and corresponding decreased catalytic cracking activity. The feasibility of the proposed route was confirmed with different ratios of dehydrogenation catalyst to the reactant. The highest yields of ethylene and propylene reached 13.22% and 33.12% with ratios of Mo/Al2O3 and ZSM-5-based catalyst to n-octane both 10:1 at 600 °C. Stability tests showed that the catalytic activity of the double-bed system was stable over 10 cycles.

Funder

SINOPEC

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3