Upgrading Mixed Agricultural Plastic and Lignocellulosic Waste to Liquid Fuels by Catalytic Pyrolysis

Author:

Sotoudehnia FaridORCID,McDonald Armando G.ORCID

Abstract

Agriculture generates non-recyclable mixed waste streams, such as plastic (netting, twine, and film) and lignocellulosic residues (bluegrass straw/chaff), which are currently disposed of by burning or landfilling. Thermochemical conversion technologies of agricultural mixed waste (AMW) are an option to upcycle this waste into transportation fuel. In this work, AMW was homogenized by compounding in a twin-screw extruder and the material was characterized by chemical and thermal analyses. The homogenized AMW was thermally and catalytically pyrolyzed (500–600 °C) in a tube batch reactor, and the products, including gas, liquid, and char, were characterized using a combination of FTIR, GC-MS, and ESI-MS. Thermal pyrolysis wax products were mainly a mixture of straight-chain hydrocarbons C7 to C44 and oxygenated compounds. Catalytic pyrolysis using zeolite Y afforded liquid products comprised of short-chain hydrocarbons and aromatics C6 to C23. The results showed a high degree of similarity between the chemical profiles of catalytic pyrolysis products and gasoline.

Funder

USDA National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3