Homogeneous Photo-Fenton Degradation and Mineralization of Model and Simulated Pesticide Wastewaters in Lab- and Pilot-Scale Reactors

Author:

Berberidou Chrysanthi,Kokkinos Petros,Poulios Ioannis,Mantzavinos DionissiosORCID

Abstract

The homogeneous photocatalytic degradation of model pesticide clopyralid (CLPR) has been investigated under various experimental setups. Lab-scale experiments under UV-A radiation in an acidic environment showed that the degradation rate generally increased when increasing either Fe3+ or H2O2 concentration up to a point beyond which (i.e., 100 mg L−1 for peroxide or 7 mg L−1 for ferric ions) Fenton reagents had little or even detrimental effect on degradation. Thus, there is an optimum concentration of Fenton reagents for maximizing treatment performance, beyond which degradation rates are not enhanced. Excessive concentrations of peroxide and/or catalyst may (i) introduce unnecessary treatment costs, (ii) reduce performance due to scavenging effects, and (iii) raise environmental concerns associated with the disposal of, e.g., high concentrations of iron in the receiving water courses. Switching from UV-A to visible light led to similar rates of degradation, i.e., 86% and 82.2%, respectively, after 90 min of reaction, highlighting the potential of using renewable energy, i.e., natural sunlight, to drive the process. Treatment for 120 min also led to 90% mineralization and quantitative release of nitrogen originally present in the pesticide; this was also accompanied by complete elimination of eco-toxicity to Vibrio fischeri. Pilot-scale experiments were performed in a fountain-type reactor using a commercial pesticide formulation containing CLPR. Both the degradation and mineralization rates increased with increasing the intensity of the incident UV-A radiation from 1.88 to 4.03 mW cm−2. Experiments were also conducted with different liquid volumes, i.e., from 3 to 8 L. Illumination of 5 L wastewater resulted in 80% mineralization after 60 min and this only slightly decreased to 73% at 8 L. Overall, the findings underline the promising perspectives of the application of the treatment method in upgrading the quality of water and liquid waste containing pesticides.

Funder

European Social Fund

Greek State

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3