Abstract
Light-harvesting of titanium oxide (TiO2) was enhanced by copper (Cu) doping, and its performance was evaluated by gabapentin (GBP) degradation under UVA-LED irradiation. The morphology and structure of TiO2 and Cu-TiO2 were characterized using XRD, FTIR, FE-SEM, EDX, TEM, PL, DRS, and BET analysis. The complete degradation of 10 mg/L GBP was obtained in the developed photocatalytic process under the optimal conditions: catalyst loading, 0.4 g/L; pH solution, 8; and reaction time, 20 min. The reactive species trapping was studied to identify the degradation mechanism in this system. Among the water matrix experiments, phosphate (PO43−) anion indicated an inverse effect in increasing efficiency. Finally, the main intermediates generation during the GBP degradation was investigated based on LC-MS analysis, and a decomposition pathway was proposed. Accordingly, doping TiO2 with Cu resulted in the development of a UVA-activated photocatalyst for efficiently degrading and mineralizing GBP as a model of a pharmaceutical compound.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献