Controlled Synthesis of Europium-Doped SnS Quantum Dots for Ultra-Fast Degradation of Selective Industrial Dyes

Author:

Murugadoss GovindhasamyORCID,Prakash Jayavel,Rajesh Kumar Manavalan,Alothman Asma A.ORCID,Habila Mohamed A.ORCID,Peera Shaik GouseORCID

Abstract

Herein, SnS and Eu-doped SnS QDs have been synthesized by a facile chemical co-precipitation method for efficient photocatalytic degradation of organic dye molecules. The structural, morphological, and optical properties of QDs were investigated by various physiochemical characterization techniques. The photocatalytic degradation of methylene blue (MB) and crystal violet (CV) dyes have been studied under visible light irradiation under direct sunlight using a spectrophotometer. Enhanced photodegradation efficiency of 87% and 94% were attained for SnS and Eu (4%)-doped SnS, respectively. For CV dye, the pure SnS showed only 70.7% however the Eu (4%)-doped SnS achieved 99% efficiency. The rate constant value of the doped SnS was found to be much higher than that of pure SnS for both dyes. The obtained results from various characterization studies provided the reason for the enhancement of the photocatalytic activity of Eu-doped SnS QDs due to the presence of Eu3+ in the SnS lattice, and also smaller crystallite size with high surface area and its morphological features. Moreover, the Eu3+ plays an essential role in reducing the band gap, hampering recombination, and the generation of free radicals, thus the QDs promoted attractive degradation activity and high stability.

Funder

King Saud University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3