Influence of Synthesis Conditions on Physicochemical and Photocatalytic Properties of Ag Containing Nanomaterials

Author:

Al-Malwi Salwa D.ORCID,Al-Ammari Rahmah H.,Alshehri AbdulmohsenORCID,Narasimharao KatabathiniORCID

Abstract

Silver (Ag) containing nanomaterials were successfully prepared by varying synthesis conditions to understand the influence of preparation conditions on the physicochemical and photocatalytic properties of these materials. Different analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Diffuse reflectance UV-vis spectra (DR UV-vis), X-ray photoelectron spectroscopy (XPS) measurements, and N2-physisorption were used to investigate the physicochemical properties of synthesized Ag containing nanomaterials. The samples (Ag-1 and Ag-2) prepared using AgNO3, NaHCO3, and polyvinylpyrrolidone (PVP) template exhibited pure Ag metal nanorods and nanoparticles; the morphology of Ag metal is influenced by the hydrothermal treatment. The Ag-3 sample prepared without PVP template and calcined at 250 °C showed the presence of a pure Ag2O phase. However, the same sample dried at 50 °C (Ag-4) showed the presence of a pure Ag2CO3 phase. Interestingly, subjecting the sample to hydrothermal treatment (Ag-5) has not resulted in any change in crystal structure, but particle size was increased. All the synthesized Ag containing nanomaterials were used as photocatalysts for p-nitrophenol (p-NP) degradation under visible light irradiation. The Ag-4 sample (pure Ag2CO3 with small crystallite size) exhibited high photocatalytic activity (86% efficiency at pH 10, p-NP concentration of 16 mg L−1, 120 min and catalyst mass of 100 mg) compared to the other synthesized Ag containing nanomaterials. The high photocatalytic activity of the Ag-4 sample is possibly due to the presence of a pure Ag2CO3 crystal structure with nanorod morphology with a low band gap energy of 1.96 eV and relative high surface area.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference53 articles.

1. Application of nanoparticles in waste water treatment;Tiwari;World Appl. Sci. J.,2008

2. Water pollution and income relationships: A seemingly unrelated partially linear analysis

3. Wastewater Engineering: Treatment, Disposal, and Reuse;Metcalf,1991

4. Developments in wastewater treatment methods

5. Process intensification of treatment of inorganic water pollutants

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3