Enhanced Performance and Stability of a Trimetallic CuZnY/SiBEA Catalyst in Ethanol to Butadiene Reaction by Introducing Copper to Optimize Acid/Base Ratio

Author:

Dai Haowen,Ye Tian,Wang Kewei,Zhang Meng,Wu Li-Ming,Ouyang Gangfeng

Abstract

Bioethanol to butadiene is currently the most promising non-oil-based butadiene production route. Here, copper is introduced into the conventional bimetallic zeolite catalyst to partially substitute for zinc; the isolated tetracoordinated Cu(II) species are formed, with weak and strong basic sites transformed into medium acid sites in trimetallic CuZnY/SiBEA catalyst. A partial substitution of zinc by copper increases the dispersion of metal, reduces the formation of ZnO clusters, decreases the pore blockage, and enhances the total pore volume of catalyst. The Cu1Zn2Y5/SiBEA catalyst with an appropriate 0.33 Cu/(Cu + Zn) mass ratio, a highest medium acid sites/(weak + strong) basic sites value of 6.17, and largest total pore volume of 0.251 cm3/g in all samples presents excellent catalytic performance in the ethanol to butadiene reaction: 99.01% ethanol conversion and 73.36% butadiene selectivity, higher than most reported ethanol to butadiene catalysts. The isolated tetracoordinated Cu(II) structure is stable, which is beneficial to the stability of trimetallic catalyst; when the reaction time is 60 h, the butadiene selectivity is 45.95%, 14% higher than corresponding bimetallic catalyst. The butadiene productivity of Cu1Zn2Y5/SiBEA catalyst reaches up to 1.68 gBD·gcat−1·h−1 at WHSV = 6 h−1 and time-on-stream = 8 h. Increasing reaction temperature could linearly increase the ethanol conversion, while the butadiene selectivity increases first and then decreases, the suitable temperature is 375 ℃ for the highest butadiene yield.

Funder

the State Key Laboratory of Structural Chemistry

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3