Abstract
Developing a non-platinum catalyst that effectively catalyzes the oxygen reduction reaction (ORR) is highly significant for metal–air batteries. Metal and nitrogen co-doped carbons (M-N-Cs) have emerged as alternative candidates to platinum. In this work, dual-metal Pd/Fe-N-C electrocatalysts were synthesized by the one-step pyrolysis of phytic acid, melamine, and Pd/Fe-based salts. The Pd/Fe-N-C catalyst exhibited a good catalytic ability during the ORR process and outperformed the commercial Pt/C catalyst as regards mass activity, catalytic stability, and methanol tolerance. It was found that Pd-Nx is the active center, and the synergistic effect from the Fe component introduction endowed the Pd/Fe-N-C with an excellent catalytic performance towards the ORR. When assembled into a Zn–air battery, its specific capacity was ~775 mAh gZn−1. Meanwhile, the peak power density could reach 3.85 W mgPd−1, i.e., 3.4 times that of the commercial Pt/C catalyst (1.13 W mgPt−1). This implies that the Pd/Fe-N-C catalyst has potential applications in metal–air batteries.
Funder
Natural Science Foundation of Shandong Province
Students Innovation Fund
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献