Catalytic Performance of Alumina-Supported Cobalt Carbide Catalysts for Low-Temperature Fischer–Tropsch Synthesis

Author:

Gholami ZahraORCID,Tišler ZdeněkORCID,Svobodová Eliška,Hradecká Ivana,Sharkov Nikita,Gholami FatemehORCID

Abstract

The determination of the catalyst’s active phase helps improve the catalytic performance of the Fischer–Tropsch (FT) synthesis. Different phases of cobalt, including cobalt oxide, carbide, and metal, exist during the reaction. The content of each phase can affect the catalytic performance and product distribution. In this study, a series of cobalt carbide catalysts were synthesized by exposure of Co/Al2O3 catalyst to CH4 at different temperatures from 300 °C to 800 °C. The physicochemical properties of the carbide catalysts (CoCx/Al2O3) were evaluated by different characterization methods. The catalytic performances of the catalysts were investigated in an autoclave reactor to determine the role of cobalt carbides on the CO conversion and product distribution during the reaction. XRD and XPS analysis confirmed the presence of Co2C in the prepared catalysts. The higher carbidation temperature resulted in the decomposition of methane into hydrogen and carbon, and the presence of graphitic carbon was confirmed by XRD, XPS, SEM, and Raman analysis. The Co2C also decomposed to metallic cobalt and carbon, and the content of cobalt carbide decreased at higher carbidation temperatures. Higher content of Co2C resulted in a lower CO conversion and higher selectivity to light alkanes, mainly methane. The higher carbidation temperature resulted in the decomposition of Co2C to metallic cobalt with higher activity in the FT reaction. The CO conversion increased by increasing the carbidation temperature from 300 °C to 800 °C, due to the higher content of metallic cobalt. In the presence of pure hydrogen, the Co2C could be converted mainly into hexagonal, close-packed (hcp) Co with higher activity for dissociative adsorption of CO, which resulted in higher catalyst activity and selectivity to heavier hydrocarbons.

Funder

Ministry of Education Youth and Sports

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3