Acid Gas and Tar Removal from Syngas of Refuse Gasification by Catalytic Reforming

Author:

Yuan Guoan,Zhou Wei,Yang Rui,Liu Yuru,Zhu Jingyu,Yin Ke,Chen DezhenORCID

Abstract

The existence of acid gas and tar in syngas of municipal solid waste gasification limits its downstream utilization as a clean energy source. Here, we investigated the catalytic removal of HCl and tar. The key parameters affecting the catalytic reaction, including space velocity, temperature, the amounts of active metals in the catalyst and the carrier material, were studied, targeting optimized operating conditions for enhanced syngas purification. The morphology, mineral phases, surface area and pore size before and after the reaction were investigated to understand the mechanism to dominate the reaction. The results showed that the removal rate of CaO adsorbent and HCl reached 96% at 400 °C. When the space velocity ratio was 1.0 and the temperature was 400 °C, HCl removal (97%) by NaAlO2 was even better. Nevertheless, clogging was observed for NaAlO2 via the BET test after reaction to jeopardize its durability. A level of 25% Ni doping on Zr1-x(Cex)O2 support provides high stability for tar removal. This is because the Zr1-x(Cex)O2 carrier has higher carbon deposition resistivity than the Al2O3 carrier. The EDX results confirmed that a large amount of C (79.3%) was accumulated on the commercial catalyst surface supported by Al2O3 (25% Ni-based). As for the temperature, a temperature higher than 800 °C could not enhance the efficiency of tar removal, likely due to catalyst deactivation. Carbon deposition and agglomeration are the two main causes of catalyst deactivation. At 800 °C, 25% Ni-based synthetic catalyst can convert 48.5 ± 19.4% tar to low molecular weight organic compounds. By contrast, such a conversion rate under the same temperature only accounted for 5.0 ± 6.8% based on a commercial catalyst. These insights point to the important role of catalyst support materials.

Funder

Shanghai Sailing Program

Shanghai Rising-Star Program

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3