Author:
Li Lu,Liu Yuwei,Liu Jingyin,Zhou Bing,Guo Mingming,Liu Lizhong
Abstract
Series of α, β, γ, δ type MnO2 supported on LaMnO3 perovskite was developed by a one-pot synthesis route. Compared with α-MnO2, β-MnO2, γ-MnO2, δ-MnO2 and LaMnO3 oxides, all MnO2/LaMnO3 showed promotional catalytic performance for toluene degradation. Among them, α-MnO2/LaMnO3 holds the best active and mineralization efficiency. By the analysis of N2 adsorption-desorption, XPS and H2-TPR, it can be inferred that the improved activity should be ascribed to the higher proportion of lattice oxygen, better low-temperature reducibility and larger specific surface area. Besides, the byproducts from the low-temperature reaction of toluene oxidation were detected by a TD/GC-MS, confirming the presence of the intermediates. Combined with the in-situ DRIFTS, the catalytic degradation path of toluene oxidation has also been discussed in depth.
Funder
Natural Science Fundamental Research Project of Jiangsu Colleges and Universities of China
Jiangsu Provincial Key Research and Development Program
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献