Abstract
Glutathione is of great significance in pharmaceutical and health fields, and one-step synthesis of reduced glutathione by glutathione bifunctional synthase has become a focus of research. The stability of glutathione bifunctional synthase is generally poor and urgently needs to be modified. The B-factor strategy and un/folding free energy calculation were both applied to enhance the thermal stability of glutathione bifunctional synthase from Streptococcus agalactiae (GshFSA). Based on the concept of B-factor strategy, we calculated the B-factor by molecular dynamics simulation to find flexible residues, performed point saturation mutations and high-throughput screening. At the same time, we also calculated the un/folding free energy of GshFSA and performed the point mutations. The optimal mutant from the B-factor strategy was R270S, which had a 2.62-fold increase in half-life period compared to the wild type, and the Q406M was the optimal mutant from the un/folding free energy calculation, with a 3.02-fold increase in half-life period. Both of them have provided a mechanistic explanation.
Funder
National Key Research and Development Program of China
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献