Reaction Characteristics of Ni-Based Catalyst Supported by Al2O3 in a Fluidized Bed for CO2 Methanation

Author:

Hwang Byungwook,Ngo Son IchORCID,Lim Young-IlORCID,Seo Myung Won,Park Sung Jin,Ryu Ho-Jung,Nam Hyungseok,Lee DoyeonORCID

Abstract

CO2 methanation is a promising technology to store renewable energy by converting carbon dioxide with green hydrogen into methane, which is known as power to gas (PtG). In this study, CO2 methanation performance of a Ni/Al2O3 catalyst was investigated in a bubbling fluidized bed (BFB) and the axial gas concentration, temperature, and CO2 conversion were densely analyzed. Moreover, a modified reaction kinetic model was proposed, and the results were compared with experimental data. The bed temperature increased by 11 °C from 340 °C to 351 °C within the first 30 mm of the fluidized bed. The CO2 conversion was approximately 90% within 50 mm from the bottom of the reactor and was maintained above this height. The Ni/Al2O3 catalyst exhibited the highest CO2 conversion (95%) at 320 °C. Using a simple plug-flow reactor model, three optimized kinetic modification factors (1.5094, 0.0238, and 0.2466) were used to fit the experimental data. The hydrodynamic effects significantly influenced the chemical reaction kinetics of the BFB.

Funder

Hanbat National University

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

Reference39 articles.

1. Murdock, H.E., Gibb, D., André, T., Appavou, F., Brown, A., Epp, B., Kondev, B., McCrone, A., Musolino, E., and Ranalder, L. Renewables 2019 Global Status Report. 2022.

2. Power to gas: Addressing renewable curtailment by converting to hydrogen;Yan;Front. Energy,2018

3. System-level power-to-gas energy storage for high penetrations of variable renewables;Lyseng;Int. J. Hydrog. Energy,2018

4. Role of power-to-gas in an integrated gas and electricity system in Great Britain;Qadrdan;Int. J. Hydrog. Energy,2015

5. Characterisation of electrical energy storage technologies;Ferreira;Energy,2013

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3