Abstract
The presence of organic compounds such as ciprofloxacin in untreated pharmaceutical wastewater often poses a serious health risk to human and aquatic life when discharged into water bodies. One of the most effective means of removing ciprofloxacin from wastewater is photocatalytic degradation. However, the synthesis of an effective photocatalyst that can degrade the organic pollutant in the wastewater is often a challenge. Hence, this study focuses on the synthesis and application of nitrogen-doped TiO2 (N-TiO2) in suspension and coated forms for the photocatalytic degradation of ciprofloxacin in wastewater by applying UV-light irradiation. The nitrogen-doped TiO2 photocatalyst was prepared by a co-precipitation process and characterized using energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The effects of the initial concentration of the ciprofloxacin (6, 12, 18, or 30 ppm), pH (3, 5, 7, or 9), and flow rate (0.4, 0.8, 0.95, or 1.5 L/min) on the degradation of the ciprofloxacin over the N-TiO2 were investigated. The results showed that the removal efficiency of ciprofloxacin was enhanced by increasing the initial ciprofloxacin concentration, while it was decreased with the increase in the feed flow rate. The best operating conditions were obtained using an initial ciprofloxacin concentration of 30 ppm, pH of 5, and feed flow rate of 0.4 L/min. Under these operating conditions, removal efficiencies of 87.87% and 93.6% were obtained for net TiO2 and N-TiO2 of 5 wt% in suspension form, respectively, while 94.5% ciprofloxacin removal efficiency was obtained using coated 5 wt% N-TiO2 after 2 h of photocatalytic degradation. Based on the response surface optimization strategy, a quadratic model was suggested to obtain mathematical expressions to predict the ciprofloxacin removal efficiency under various studied operational parameters.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science