Abstract
N-doped TiO2 (N-TiO2) and N-doped ZnO (N-ZnO) were synthesized utilizing ammonia as a dopant source. The chemico-physical characteristics of synthesized samples were studied by Raman spectroscopy, X-ray diffraction, SEM analysis, N2 adsorption–desorption at −196 °C, and diffuse reflectance spectroscopy. Compared to undoped samples, the introduction of nitrogen in the semiconductor lattice resulted in a shift of band-gap energy to a lower value: 3.0 eV for N-ZnO and 2.35 eV for N-TiO2. The photocatalysts were tested for the degradation of Eriochrome Black T (EBT), which was selected as a model azo dye. Both N-doped semiconductors evidenced an improvement in photocatalytic activity under visible light irradiation (62% and 20% EBT discoloration for N-TiO2 and N-ZnO, respectively) in comparison with the undoped samples, which were inactive in the presence of visible light. Different behavior was observed under UV irradiation. Whereas N-TiO2 was more photoactive than commercial undoped TiO2, the introduction of nitrogen in ZnO wurtzite resulted in a drastic reduction in photocatalytic activity, with only 45% EBT discoloration compared to total color removal obtained with the commercial ZnO sample, suggesting intrinsic limitations for doping of this class of semiconductors.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献