Ni-Al Self-Propagating High-Temperature Synthesis Catalysts in Dry Reforming of Methane to Hydrogen-Enriched Fuel Mixtures

Author:

Tungatarova SvetlanaORCID,Xanthopoulou GalinaORCID,Vekinis George,Karanasios Konstantinos,Baizhumanova TolkynORCID,Zhumabek ManapkhanORCID,Sadenova Marzhan

Abstract

The worldwide increase in demand for environmentally friendly energy has led to the intensification of work on the synthesis of H2-containing fuel. The dry reforming of methane has become one of the most important avenues of research since the consumption of two greenhouse gases reduces the rate of global warming. A study of NiAl composite materials as catalysts for methane reforming has been carried out. Self-propagating high-temperature synthesis (SHS) has been used to produce NiAl catalysts. Comparative studies were carried out regarding the dry reforming and partial oxidation of methane, as well as catalysts prepared using the impregnation (IM) and SHS methods. A catalyst with 29% Ni and 51% Al after SHS contains the phases of NiAl and NiAl2O4, which are active phases in the dry reforming of methane. The optimal crystal lattice parameter (for the maximum possible conversion of CO2 and CH4) is 3.48–3.485 Å for Al2O3, which plays the role of a catalyst carrier, and 1.42 Å, for NiAl2O4, which plays the role of a catalyst. The aim of the work is to develop a new and efficient catalyst for the dry reforming of methane into a synthesis gas, which will further promote the organization of a new era of environmentally friendly energy-saving production methods.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3