Color-Guided Depth Map Super-Resolution Using a Dual-Branch Multi-Scale Residual Network with Channel Interaction

Author:

Chen Ruijin,Gao WeiORCID

Abstract

We designed an end-to-end dual-branch residual network architecture that inputs a low-resolution (LR) depth map and a corresponding high-resolution (HR) color image separately into the two branches, and outputs an HR depth map through a multi-scale, channel-wise feature extraction, interaction, and upsampling. Each branch of this network contains several residual levels at different scales, and each level comprises multiple residual groups composed of several residual blocks. A short-skip connection in every residual block and a long-skip connection in each residual group or level allow for low-frequency information to be bypassed while the main network focuses on learning high-frequency information. High-frequency information learned by each residual block in the color image branch is input into the corresponding residual block in the depth map branch, and this kind of channel-wise feature supplement and fusion can not only help the depth map branch to alleviate blur in details like edges, but also introduce some depth artifacts to feature maps. To avoid the above introduced artifacts, the channel interaction fuses the feature maps using weights referring to the channel attention mechanism. The parallel multi-scale network architecture with channel interaction for feature guidance is the main contribution of our work and experiments show that our proposed method had a better performance in terms of accuracy compared with other methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Color image guided depth image reconstruction based on a total variation network;Journal of the Optical Society of America A;2023-12-06

2. Color image-guided very low-resolution depth image reconstruction;Signal, Image and Video Processing;2022-12-30

3. Fast, High-Quality Hierarchical Depth-Map Super-Resolution;Proceedings of the 29th ACM International Conference on Multimedia;2021-10-17

4. Dense short connection network for efficient image classification;Concurrency and Computation: Practice and Experience;2021-02-02

5. Camera and Lidar-Based View Generation for Augmented Remote Operation in Mining Applications;IEEE Access;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3