Performance Analysis of Lambda Architecture-Based Big-Data Systems on Air/Ground Surveillance Application with ADS-B Data

Author:

Demirezen Mustafa Umut1ORCID,Navruz Tuğba Selcen2ORCID

Affiliation:

1. Data Products Department, UDemy Inc., San Francisco, CA 94107, USA

2. Department of Electrical Electronics Engineering, Faculty of Engineering, Gazi University, Ankara 06570, Turkey

Abstract

This study introduces a novel methodology designed to assess the accuracy of data processing in the Lambda Architecture (LA), an advanced big-data framework qualified for processing streaming (data in motion) and batch (data at rest) data. Distinct from prior studies that have focused on hardware performance and scalability evaluations, our research uniquely targets the intricate aspects of data-processing accuracy within the various layers of LA. The salient contribution of this study lies in its empirical approach. For the first time, we provide empirical evidence that validates previously theoretical assertions about LA, which have remained largely unexamined due to LA’s intricate design. Our methodology encompasses the evaluation of prospective technologies across all levels of LA, the examination of layer-specific design limitations, and the implementation of a uniform software development framework across multiple layers. Specifically, our methodology employs a unique set of metrics, including data latency and processing accuracy under various conditions, which serve as critical indicators of LA’s accurate data-processing performance. Our findings compellingly illustrate LA’s “eventual consistency”. Despite potential transient inconsistencies during real-time processing in the Speed Layer (SL), the system ultimately converges to deliver precise and reliable results, as informed by the comprehensive computations of the Batch Layer (BL). This empirical validation not only confirms but also quantifies the claims posited by previous theoretical discourse, with our results indicating a 100% accuracy rate under various severe data-ingestion scenarios. We applied this methodology in a practical case study involving air/ground surveillance, a domain where data accuracy is paramount. This application demonstrates the effectiveness of the methodology using real-world data-intake scenarios, therefore distinguishing this study from hardware-centric evaluations. This study not only contributes to the existing body of knowledge on LA but also addresses a significant literature gap. By offering a novel, empirically supported methodology for testing LA, a methodology with potential applicability to other big-data architectures, this study sets a precedent for future research in this area, advancing beyond previous work that lacked empirical validation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3