Understanding Hierarchical Processes

Author:

Buntine WrayORCID

Abstract

Hierarchical stochastic processes, such as the hierarchical Dirichlet process, hold an important position as a modelling tool in statistical machine learning, and are even used in deep neural networks. They allow, for instance, networks of probability vectors to be used in general statistical modelling, intrinsically supporting information sharing through the network. This paper presents a general theory of hierarchical stochastic processes and illustrates its use on the gamma process and the generalised gamma process. In general, most of the convenient properties of hierarchical Dirichlet processes extend to the broader family. The main construction for this corresponds to estimating the moments of an infinitely divisible distribution based on its cumulants. Various equivalences and relationships can then be applied to networks of hierarchical processes. Examples given demonstrate the duplication in non-parametric research, and presents plots of the Pitman–Yor distribution.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference48 articles.

1. Teh, Y. (2006, January 17–21). A hierarchical Bayesian language model based on Pitman-Yor processes. Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the ACL; ACL ’06, Sydney, Australia.

2. Kneser, R., and Ney, H. (1995, January 9–12). Improved backing-off for m-gram language modeling. Proceedings of the Internatinal Conference on Acoustics, Speech, and Signal Processing, Detroit, MI, USA.

3. Hierarchical Dirichlet Processes;J. ASA,2006

4. Buntine, W., and Mishra, S. (2014, January 24–27). Experiments with Non-parametric Topic Models. Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA.

5. Improvements to the Sequence Memoizer;Adv. Neural Inf. Process. Syst.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3