Responses of Soil Labile Organic Carbon to a Simulated Hurricane Disturbance in a Tropical Wet Forest

Author:

Liu Xianbin,Zeng Xiucheng,Zou Xiaoming,Lodge D.,Stankavich Sarah,González GrizelleORCID,Cantrell Sharon

Abstract

Hurricanes are an important disturbance in the tropics that can alter forest ecosystem properties and processes. To understand the immediate influence of hurricane disturbance on carbon cycling, we examined soil labile organic carbon (LOC) in a Canopy Trimming Experiment (CTE) located in the Luquillo Experimental Forest of Puerto Rico. We trimmed tree canopy and deposited debris (CTDD) on the forest ground of the treatment plots in December 2014, and collected floor mass samples and 0–10 cm soil samples three weeks before the treatment, as well as at scheduled intervals for 120 weeks after the treatment. Within the first week following the CTDD treatment, the mean soil microbial biomass carbon (MBC) and soil LOC in the CTDD plots were significantly greater than in the control plots (soil MBC: 2.56 g/kg versus 1.98 g/kg, soil LOC: 9.16 g/kg versus 6.44 g/kg, respectively), and the mean turnover rates of soil LOC in the CTDD plots were significantly faster than in the control plots. The measured indices fluctuated temporally more in the CTDD plots than in the control plots, especially between the 12th and 84th week after the CTDD treatment. The treatment effect on soil LOC and its turnover rate gradually disappeared after the 84th week following the treatment, while higher levels of soil MBC in the CTDD plots than in the control plots remained high, even at the 120th week. Our data suggest that hurricane disturbance can accelerate the cycling of soil LOC on a short temporal scale of less than two years, but might have a longer lasting effect on soil MBC in a tropical wet forest.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3