Using MODFLOW to Model Riparian Wetland Shallow Groundwater and Nutrient Dynamics in an Appalachian Watershed

Author:

Abesh Bidisha Faruque1,Anderson James T.2ORCID,Hubbart Jason A.13ORCID

Affiliation:

1. Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

2. James C. Kennedy Waterfowl and Wetlands Conservation Center, Belle W. Baruch Institute of Coastal Ecology and Forest Science, Georgetown, SC 29442, USA

3. West Virginia Agricultural and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA

Abstract

Simulating shallow groundwater (SGW) flow dynamics and stream–SGW interactions using numerical modeling tools is necessary to develop a mechanistic understanding of water flow systems and improve confidence in water resource management practices. A three-dimensional (3D) SGW flow model was developed for a riparian wetland in a mixed forest and agricultural catchment in West Virginia (WV), Appalachia, USA, using a Modular 3D Groundwater Model (MODFLOW). The MODFLOW simulation was calibrated in steady (R2 = 0.98, ME = −0.21, and RMSE = 0.77), transient state (R2 = 0.97, ME = −0.41, and RMSE = 1.28) and validated (R2 = 0.97, ME = −0.28, and RMSE = 1.05) using observed SGW levels from thirteen nested piezometers under steady and transient states. An experimental MT3D transport scenario was developed to show the lateral transport of NO₃-N from the aquifer to stream cells. Relatively stable SGW head distribution was observed. In the downstream reach, SGW discharge varied from 948 m3/day to 907 m3/day in 2020, with creek seepage ranging from 802 m3/day to 790 m3/day. Similarly, SGW input to the stream ranged from 891 m3/day to 978 m3/day, while creek seepage ranged from 796 m3/day to 800 m3/day in 2021. In upstream reaches, losing stream conditions were observed in January, June, and September 2020 and January to April 2021, while gaining stream conditions prevailed during other months. Thus, an approximately monthly alternating gaining–losing stream condition was observed in the upstream area. An experimental MT3D transport scenario resulted in an advection–dispersion scenario, showing a cumulative loss of 947 g of NO3-N from SGW to the stream. Denitrification accounted for the cumulative loss of 1406 g of NO3-N from SGW, surpassing 639 g of nitrate from the SGW to the stream during the study period. Additionally, particle tracking using MODPATH indicated a long residence time for SGW nutrients, affirming the efficiency of nitrogen transformation through denitrification. This study is among the first to simulate hydrologic and nutrient interactions in riparian wetlands of a mixed land use catchment in the Appalachian region of the northeastern United States. The results better inform water resource management decisions and modeling efforts in the Appalachian region and similar physiographic regions globally.

Funder

USDA National Institute of Food and Agriculture

West Virginia Agricultural and Forestry Experiment Station

USDA Natural Resources Conservation Service

Environmental Protection Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3