CHP Engine Anomaly Detection Based on Parallel CNN-LSTM with Residual Blocks and Attention

Author:

Chung Won Hee1ORCID,Gu Yeong Hyeon1ORCID,Yoo Seong Joon2

Affiliation:

1. Artificial Intelligence Department, Sejong University, Seoul 05006, Republic of Korea

2. Computer Science and Engineering Department, Sejong University, Seoul 05006, Republic of Korea

Abstract

The extreme operating environment of the combined heat and power (CHP) engine is likely to cause anomalies and defects, which can lead to engine failure; thus, detecting engine anomalies is essential. In this study, we propose a parallel convolutional neural network–long short-term memory (CNN-LSTM) residual blocks attention (PCLRA) anomaly detection model with engine sensor data. To our knowledge, this is the first time that parallel CNN-LSTM-based networks have been used in the field of CHP engine anomaly detection. In PCLRA, spatiotemporal features are extracted via CNN-LSTM in parallel and the information loss is compensated using the residual blocks and attention mechanism. The performance of PCLRA is compared with various hybrid models for 15 cases. First, the performances of serial and parallel models are compared. In addition, we evaluated the contributions of the residual blocks and attention mechanism to the performance of the CNN–LSTM hybrid model. The results indicate that PCLRA achieves the best performance, with a macro f1 score (mean ± standard deviation) of 0.951 ± 0.033, an anomaly f1 score of 0.903 ± 0.064, and an accuracy of 0.999 ± 0.002. We expect that the energy efficiency and safety of CHP engines can be improved by applying the PCLRA anomaly detection model.

Funder

Korea government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3