From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials

Author:

Luna Carlos Bruno BarretoORCID,da Silva Wallisson AlvesORCID,Araújo Edcleide Maria,da Silva Lara Júlia Medeiros Dantas,de Melo João Baptista da Costa Agra,Wellen Renate Maria RamosORCID

Abstract

This work investigated the effect of thermo-oxidation aging in blends of copolymer polypropylene (PPc)/recycled copolymer polypropylene (PPcr) from industrial container waste, coded as PPc/PPcr blends. All compounds were melt extruded, and the injection molded specimens were characterized by mechanical properties (tensile and impact), Fourier-transform infrared spectroscopy (FTIR), melt flow index (MFI), contact angle, heat deflection temperature (HDT), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). FTIR spectra presented bands related to the hydroperoxides and carbonyl groups, as resulted from thermo-oxidation aging. The contact angle decreased upon a thermo-oxidation aging influence, corroborating the FTIR spectra. PPcr presented higher MFI as a consequence of reprocessing. Impact strength and elongation at break were quite sensible to the thermo-oxidation aging influence and were progressively reduced upon increased time, whereas tensile strength, elastic modulus, and HDT only slightly changed. SEM images of PPc presented a higher quantity of pulled-out particles, resulted from a lower interaction between phases, i.e., polypropylene and ethylene/propylene. From the impact strength and toughness data, proper dissipation energy mechanisms were found in PPc/PPcr blends. Summing up, using PPcr contributed to minimize properties’ losses, which may be related to the stabilizer agents, whereas the described results presented great potential for the PP market, while contributing to the sustainable environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3