An Improved In-Motion Coarse Alignment Method for SINS/GPS Integration with Initial Velocity Error Suppression

Author:

Wang Yukun1,Ning Xiuli2,Xu Xiang3ORCID

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. China National Institute of Standardization, Beijing 100191, China

3. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The integrated system with the strapdown inertial navigation system (SINS) and the global positioning system (GPS) is the most popular navigation mode. It has been used in many navigation fields. Before the integrated system works properly, it must determine the initial attitude for SINS. In SINS/GPS-integrated systems, the navigational velocity can be used to carry out the initial alignment when the system is installed in the in-motion vehicle. However, the initial velocity errors are not considered in the current popular in-motion alignment methods for SINS/GPS integration. It is well-known that the initial velocity errors must exist when the initial velocity is obtained from the GPS outputs. In this paper, an improved method was proposed to solve this problem. By analyzing the original observation vectors in the in-motion coarse alignment method, an average operation was used to construct the intermediate vectors, and the new observation vector can be calculated by subtracting the intermediate vector from the original observation vector. Then, the initial velocity errors can be eliminated from the newly constructed observation vector. Thus, the interferences of the initial velocity errors for the initial alignment process can be suppressed. The simulation and field tests are designed to verify the performance of the proposed method. The tests results showed that the proposed method can obtain the higher accurate results than the current methods when the initial velocity is considered. Additionally, the results of the proposed method were similar to the current methods when the initial velocity errors were not considered. This shows that the initial velocity errors were eliminated effectively by the proposed method, and the alignment accuracy were not decreased.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Groves, P.D. (2013). Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems, Artech House.

2. Velocity/position integration formula part II: Application to strapdown inertial navigation computation;Wu;IEEE Trans. Aerosp. Electron. Syst.,2013

3. Rapid fine strapdown INS alignment method under marine mooring condition;Gao;IEEE Trans. Aerosp. Electron. Syst.,2011

4. Phase Modulation-Based SINS Damping Method for Autonomous Vehicles;Qin;IEEE Sens. J.,2018

5. Transverse Navigation under the Ellipsoidal Earth Model and its Performance in both Polar and Non-polar areas;Yao;J. Navig.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3