Towards Robust Pansharpening: A Large-Scale High-Resolution Multi-Scene Dataset and Novel Approach

Author:

Wang Shiying12,Zou Xuechao3,Li Kai4,Xing Junliang4ORCID,Cao Tengfei12,Tao Pin14

Affiliation:

1. School of Computer Technology and Application, Qinghai University, Xining 810016, China

2. Intelligent Computing and Application Laboratory of Qinghai Province, Qinghai University, Xining 810016, China

3. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

4. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Abstract

Pansharpening, a pivotal task in remote sensing, involves integrating low-resolution multispectral images with high-resolution panchromatic images to synthesize an image that is both high-resolution and retains multispectral information. These pansharpened images enhance precision in land cover classification, change detection, and environmental monitoring within remote sensing data analysis. While deep learning techniques have shown significant success in pansharpening, existing methods often face limitations in their evaluation, focusing on restricted satellite data sources, single scene types, and low-resolution images. This paper addresses this gap by introducing PanBench, a high-resolution multi-scene dataset containing all mainstream satellites and comprising 5898 pairs of samples. Each pair includes a four-channel (RGB + near-infrared) multispectral image of 256 × 256 pixels and a mono-channel panchromatic image of 1024 × 1024 pixels. To avoid irreversible loss of spectral information and achieve a high-fidelity synthesis, we propose a Cascaded Multiscale Fusion Network (CMFNet) for pansharpening. Multispectral images are progressively upsampled while panchromatic images are downsampled. Corresponding multispectral features and panchromatic features at the same scale are then fused in a cascaded manner to obtain more robust features. Extensive experiments validate the effectiveness of CMFNet.

Funder

Natural Science Foundation of Qinghai Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3