Creep–Fatigue Experiment and Life Prediction Study of Piston 2A80 Aluminum Alloy

Author:

Dong YiORCID,Liu Jianmin,Liu Yanbin,Li Huaying,Zhang Xiaoming,Hu Xuesong

Abstract

In order to improve the reliability and service life of vehicle and diesel engine, the fatigue life prediction of the piston in a heavy diesel engine was studied by finite element analysis of piston, experiment data of aluminum alloy, fatigue life model based on energy dissipation criteria, and machine learning algorithm. First, the finite element method was used to calculate and analyze the temperature field, thermal stress field, and thermal–mechanical coupling stress field of the piston, and determine the area of heavy thermal and mechanical load that will affect the fatigue life of the piston. Second, based on the results of finite element calculation, the creep–fatigue experiment of 2A80 aluminum alloy was carried out, and the cyclic response characteristics of the material under different loading conditions were obtained. Third, the fatigue life prediction models based on energy dissipation criterion and twin support vector regression are proposed. Then, the accuracy of the two models was verified using experiment data. The results show that the model based on the twin support vector regression is more accurate for predicting the material properties of aluminum alloy. Based on the established life prediction model, the fatigue life of pistons under actual service conditions is predicted. The calculation results show that the minimum fatigue life of the piston under plain condition is 2113.60 h, and the fatigue life under 5000 m altitude condition is 1425.70 h.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3