Abstract
Novel carbon nanofiller-based starch-g-polyacrylamide hybrid flocculation materials (St-PAM-CS) were in situ prepared using potato starch (St), acrylamide (AM), and hollow mesoporous carbon spheres (CSs; diameters of 300–400 nm). Structures of different St-PAM-CS systems were characterized by Fourier transform infrared (FTIR) spectroscopy, X-Ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), laser scanning microscopy (LSM), and particle size analysis. The flocculation tests were evaluated by removing high turbidity kaolin suspension—initial absorbance 1.84. The effect of the St to AM molar ratio, doses, and content of CSs in hybrids on flocculation efficiency were examined. Satisfactory flocculation efficiency was obtained for all hybrids with 1 wt.% of the CS component. The highest reduction of the kaolin suspension absorbance (to 0.06) was observed for a 3 mL dose of the starch hybrid with the highest AM content. Additionally, St-PAM-CS showed a reduction in the sludge volume in time. The hybrids reached better flocculation efficiency in relation to the reference systems without CSs. The proposed flocculation mechanism (considering bridging, patching, and formation of hydrogen bonds) has been confirmed by the recorded results.
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献