Study on Storage Stability of Activated Reclaimed Rubber Powder Modified Asphalt

Author:

Kong Peipei,Xu Gang,Yang Jingyao,Chen XianhuaORCID,Zhu Yaqin

Abstract

The purpose of this research was to make full use of waste lubricating by-products (LBP) and reclaimed rubber powder (RR) to modify asphalt by a one-pot approach, so as to achieve the dual purpose of solving the poor storage stability of reclaimed rubber powder modified asphalt (RRMA) and the realization of solid waste recycling. A variety of characterization techniques were performed to analyze storage stability, conventional properties and microstructure of LBP-activated reclaimed rubber powder modified asphalt (Blend). Fourier transform infrared spectroscopy illustrated that not only the chemical composition of LBP was very similar to that of asphalt, but also the activation of LBP improved the compatibility of RR with asphalt and enhanced the storage stability of Blend. Fluorescence spectrum and scanning electron microscopy results indicated that the RR without LBP activation was aggregated and dispersed as blocks in asphalt, while the LBP activated RR was uniformly dispersed in the asphalt phase. The segregation test demonstrated that Blend exhibited outstanding storage stability, in which the softening point difference was within 2.5 °C and the segregation rate was −0.2–0.2. In addition, the conventional properties of Blend have been significantly improved, especially in penetration and ductility. More importantly, the short-term aging results demonstrated that, compared with RRMA, Blend possessed excellent anti-aging performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3