Bacterial Exposure to Nickel: Influence on Adhesion and Biofilm Formation on Orthodontic Archwires and Sensitivity to Antimicrobial Agents

Author:

Pavlic Andrej,Begic Gabrijela,Tota Marin,Abram Maja,Spalj StjepanORCID,Gobin IvanaORCID

Abstract

The presence of nickel could modify bacterial behavior and susceptibility to antimicrobial agents. Adhesion and biofilm formation on orthodontic archwires can be a source of bacterial colonization and possible health hazards. Staphylococcus aureus was subjected to exposure and adaptation to various sub-inhibitory concentrations of nickel. Five strains of bacteria adapted to nickel in concentrations of 62.5–1000 μg/mL were tested for adhesion and biofilm formation on nickel-titanium archwires. Archwires were previously incubated in artificial saliva. Bacteria were incubated with orthodontic wire with stirring for 4 h (adhesion) and 24 h (biofilm formation). The number of adherent bacteria was determined after sonication and cultivation on the Muller-Hinton agar. Disk diffusion method was performed on all bacteria to assess the differences in antimicrobial susceptibility. Bacteria adapted to lower concentrations of nickel adhered better to nickel-titanium than strains adapted to higher concentrations of nickel (p < 0.05). Biofilm formation was highest in strains adapted to 250 and 500 μg/mL of nickel (p < 0.05). The highest biofilm biomass was measured for strains adapted to 250 μg/mL, followed by those adapted to 1000 μg/mL. Bacteria adapted to lower concentrations of nickel demonstrated lower inhibition zone diameters in the disk diffusion method (p < 0.05), indicating increased antimicrobial resistance. In conclusion, bacteria adapted to 250 μg/mL of nickel ions adhered better, demonstrated higher biofilm formation and often had higher antimicrobial resistance than other adapted and non-adapted strains.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3