Abstract
Borated stainless steel (BSS) with a boron content of 1.86% was prepared by a powder metallurgy process incorporating atomization and hot isostatic pressing. After solution quenching at 900–1200 °C, the phase composition of the alloy was studied by quantitative X-ray diffraction phase analysis. The microstructure, fracture morphology, and distributions of boron, chromium, and iron in grains of the alloy were analyzed by field-emission scanning electron microscopy with secondary electron and energy-dispersive spectroscopy. After the coupons were heat treated at different temperatures ranging from 900 to 1200 °C, the strength and plasticity were tested, and the fracture surfaces were analyzed. Undergoing heat treatment at different temperatures, the phases of the alloy were austenite and Fe1.1Cr0.9B0.9 phase. Since the diffusion coefficients of Cr, Fe, and B varied at different temperatures, the distribution of elements in the alloy was not uniform. The alloy with good strength and plasticity can be obtained when the heat treatment temperature of alloy ranged from 1000 to 1150 °C while the tensile strength was about 800 MPa, with the elongation standing about 20%.
Funder
the 2018 High Tech Industrialization and Application Demonstration Project of Hebei Province Development and Reform Commission
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献