Influence of Rigid Segment Type on Copoly(ether-ester) Properties

Author:

Walkowiak Konrad,Irska IzabelaORCID,Zubkiewicz Agata,Rozwadowski ZbigniewORCID,Paszkiewicz SandraORCID

Abstract

The growing ecological awareness of society created the tendency to replace petrochemically based materials with alternative energy carriers and renewable raw materials. One of the most requested groups of polymer materials with significant technological importance is thermoplastic elastomers (TPE). They combine the properties of elastomers such as flexibility with the typical properties of thermoplastics, like easy processing. Herein, one compares the influence of rigid segments on the properties of copoly(ester-ether). Thermoplastic polyesters based on bio-1,6-hexanediol and terephthalic (T), furanic (F), and napthalate (N) diesters, i.e., PHT, PHF, and PHN, were obtained employing melt polycondensation. Additionally, to grant elastic properties of polyesters, systems containing 50 wt.% of bio-based polyTHF®1000 (pTHF) with a molecular mass of 1000 g/mol, have been prepared. The composition and chemical structure have been determined by 1H nuclear magnetic resonance (NMR) and Fourier transformed infrared spectroscopy (FTIR) analyses. The temperatures corresponding to phase transition changes were characterized by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) analyses. The crystalline structure was examined by X-ray diffraction (XRD) analysis. Additionally, the influence of pTHF–rich segment on the tensile properties, water absorption, as well as thermal and thermo-oxidative stability, has been analyzed. It was found that incorporation of soft phase allows creation of thermoplastic elastomers with tensile characteristics comparable to the commercially available ones, by means of elongation at break higher than 500%, low values of tensile modulus, without exhibiting yield point.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Now Offers Bio-Based PolyTHFhttps://www.basf.com/global/en/media/news-releases/2015/03/p-15-163.html

2. Poly(THF-co-cyano ethylene oxide): Cyano Ethylene Oxide (CEO) Copolymerization with THF Leading to Multifunctional and Water-Soluble PolyTHF Polyelectrolytes

3. Rennovia Enters Piloting Stage of Its Bio-Based 1,6-Hexanediol Processhttps://www.bioplasticsmagazine.com/en/news/meldungen/20170329-Rennovia-takes-step-towards-commercialization-of-biobased-platform.php

4. Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties

5. One-Pot FDCA Diester Synthesis from Mucic Acid and Their Solvent-Free Regioselective Polytransesterification for Production of Glycerol-Based Furanic Polyesters

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3