Electronic Structure, Spectroscopy, Cold Ion–Atom Elastic Collision Properties, and Photoassociation Formation Prediction of the (MgCs)+ Molecular Ion

Author:

Farjallah Mohamed1,Sardar Dibyendu2,Deb Bimalendu2,Berriche Hamid13ORCID

Affiliation:

1. Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia

2. School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India

3. Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al-Khaimah P.O. Box 10021, United Arab Emirates

Abstract

In this paper, we extensively study the electronic structure, interactions, and dynamics of the (MgCs)+ molecular ion. The exchanges between the alkaline atom and the low-energy cationic alkaline earths, which are important in the field of cold and ultracold quantum chemistry, are studied. We use an ab initio approach based on the formalism of non-empirical pseudo-potential for Mg2+ and Cs+ cores, large Gaussian basis sets, and full-valence configuration interaction. In this context, the (MgCs)+ cation is treated as an effective two-electron system. Adiabatic potential energy curves and their spectroscopic constants for the ground and the first 20 excited states of 1,3Σ+ symmetries are determined. Furthermore, we identify the avoided crossings between the electronic states of 1,3Σ+ symmetries. These crossings are related to the charge transfer process between the two ionic limits, Mg/Cs+ and Mg+/Cs. Therefore, vibrational-level spacings and the transition and permanent dipole moments are presented and analyzed. Using the produced potential energy data, the ground-state scattering wave functions and elastic cross-sections are calculated for a wide range of energies. In addition, we predict the formation of a translationally and rotationally cold molecular ion (MgCs)+ in the ground-state electronic potential energy through a stimulated Raman-type process aided by ion–atom cold collision. In the low-energy limit (<1 mK), elastic scattering cross-sections exhibit Wigner law threshold behavior, while in the high-energy limit, the cross-sections act as a function of energy E go as E−1/3. A qualitative discussion about the possibilities of forming cold (MgCs)+ molecular ions by photoassociative spectroscopy is presented.

Funder

American University of Ras Al Khaimah

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3