Comparative Study on Object-Oriented Identification Methods of Plastic Greenhouses Based on Landsat Operational Land Imager

Author:

Yi Yang12ORCID,Shi Mingchang1,Gao Mengjie1,Zhang Guimin3,Xing Luqi2,Zhang Chen2,Xie Jianwu4

Affiliation:

1. Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, National Innovation Alliance of National Forestry and Grassland Administration on Afforestation and Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China

3. Inner Mongolia Aohan Banner Water Conservancy Bureau, Hohhot 024300, China

4. College of Road and Bridge Engineering, Tianjin Vocational College of Communications, Tianjin 300393, China

Abstract

The rapid and precise acquisition of the agricultural plastic greenhouse (PG) spatial distribution is essential in understanding PG usage and degradation, ensuring agricultural production, and protecting the ecological environment and human health. It is of great practical significance to realize the effective utilization of remote sensing images in the agricultural field and improve the extraction accuracy of PG remote sensing data. In this study, Landsat operational land imager (OLI) remote sensing images were used as data sources, and Shandong Province, which has the largest PG distribution in China, was selected as the study area. PGs in the study area were identified by means of contour recognition, feature set construction of the spatial structure, and machine learning. The results were as follows. (1) Through an optimal segmentation parameter approach, it was determined that the optimal segmentation scale for size, shape, and compactness should be set at 20, 0.8, and 0.5, respectively, which significantly improved PG contour recognition. (2) Among the 72 feature variables for PG spatial recognition, the number of features and classification accuracy showed a trend of first gradually increasing and then decreasing. Among them, fifteen feature variables, including the mean of bands 2 and 5; six index features (NDWI, GNDVI, SWIR1_NIR, NDVI, and PMLI); two shape features, the density and shape index; and two texture features, the contrast and standard deviation, played an important role. (3) According to the recall rate, accuracy rate, and F-value of three machine learning methods, random forest (RDF), CART decision tree (CART), and support vector machine (SVM), SVM had the best classification effect. The classification method described in this paper can accurately extract continuous plastic greenhouses through remote sensing images and provide a reference for the application of facility agriculture and non-point-source pollution control.

Funder

Youth Soft Science Research Project of Shanghai

Natural Science Foundation of Shanghai

Yangfan Special Project of the Shanghai Qimingxing Program

National Key R&D Program of China

Initiative Program for Young Scholars of Shanghai Academy of Landscape Architecture Science and Planning

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3