Abstract
In this paper, we consider a two-machine job-shop scheduling problem of minimizing total completion time subject to n jobs with two operations and equal processing times on each machine. This problem occurs e.g., as a single-track railway scheduling problem with three stations and constant travel times between any two adjacent stations. We present a polynomial dynamic programming algorithm of the complexity O ( n 5 ) and a heuristic procedure of the complexity O ( n 3 ) . This settles the complexity status of the problem under consideration which was open before and extends earlier work for the two-station single-track railway scheduling problem. We also present computational results of the comparison of both algorithms. For the 30,000 instances with up to 30 jobs considered, the average relative error of the heuristic is less than 1 % . In our tests, the practical running time of the dynamic programming algorithm was even bounded by O ( n 4 ) .
Funder
Deutscher Akademischer Austauschdienst
Russian Foundation for Basic Research
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献