Multivariate Analysis for Prediction of Splitting Tensile Strength in Concrete Paving Blocks

Author:

Benalcázar-Rojas Vinicio R.1ORCID,Yambay-Vallejo Wilman J.12,Herrera-Granda Erick P.1

Affiliation:

1. Universidad Politécnica Estatal del Carchi, Posgrado, Av. Universitaria y Antisana, Tulcán 040101, Carchi, Ecuador

2. Facultad de Industrias Agropecuarias y Ciencias Ambientales, Universidad Politécnica Estatal del Carchi, Tulcán 040101, Ecuador

Abstract

Paving blocks are concrete pieces exposed to the weather and subjected to loads and wear. Hence, quality control in their manufacture is essential to guarantee their properties and durability. In Ecuador, the requirements are described in the technical standard “NTE INEN 3040”, and tensile splitting strength is a fundamental requirement to guarantee product quality. The objective of the study is to predict the tensile splitting strength using two groups of predictor variables. The first group is the thickness in mm, width in mm, length in mm, mass of the fresh paving block in g, and percentage of water absorption; the second group of predictor variables is the density of the fresh paving block in kg/m3 and the percentage of water absorption. The data were obtained from a company that can produce 30,000 units per day of rectangular paving blocks with 6 cm thickness. The research involves sampling, analysis of outliers, descriptive and inferential statistics, and the analysis of multivariate models such as multiple linear regression, regression trees, random forests, and neural networks. It is concluded that the multiple linear regression method performs better in predicting the first group of predictor variables with a mean square error (MSE) of 0.110086, followed by the neural network without hidden layers, resulting in an MSE of 0.112198. The best method for the second set of predictors was the neural network without hidden layers, with a mean square error (MSE) of 0.112402, closely followed by the multiple linear regression model, with an MSE of 0.115044.

Funder

Carchi State Polytechnic University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. (2016). Adoquines de Hormigón. Requisitos y Métodos de Ensayo (Standard No. NTE INEN 3040).

2. (2002). Method for Splitting Tensile Strength of Cylindrical Concrete Specimens (Standard No. ASTM C496).

3. (1986). Determinación de la Resistencia a la Compresión (Standard No. INEN 1485).

4. Purwanto, P., and Priastiwi, Y. (2008). Testing of concrete paving blocks the bs en 1338:2003 british and european standard code. Teknik, 29.

5. Prediction of splitting tensile strength of high-performance concrete;Zain;Cem. Concr. Res.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3