Failure Analysis of Resistance Spot-Welded Structure Using XFEM: Lifetime Assessment

Author:

Demiral Murat1ORCID,Duran Ertugrul Tolga1

Affiliation:

1. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

Abstract

Due to their effective and affordable joining capabilities, resistance spot-welded (RSW) structures are widely used in many industries, including the automotive, aerospace, and manufacturing sectors. Because spot-welded structures are frequently subjected to cyclic stress conditions while in service, fatigue failure is a serious concern. It is essential to comprehend and predict their fatigue behavior in order to guarantee the dependability and durability of the relevant engineering products. The analysis of fatigue failure in spot-welded structures is the main topic of this paper, along with the prediction of fatigue life (Nf) and identification of failure mechanisms. Also, the effects of parameters such as the amount of cyclic load applied, the load ratio, and size of the spot-welding on the Nf were investigated. To achieve this, the fatigue performance of spot-welded joints was simulated using the extended finite element method (XFEM). The XFEM method is particularly suited for capturing intricate crack patterns in spot-welded structures because it allows for the modeling of crack propagation without the need for remeshing. It was observed that when the cycling load was decreased by 20%, Nf increased by around 250%. On the other hand, the fatigue life of the structure, and, hence, the crack propagation rate, was significantly affected by the load ratio and diameter of the spot-welding. This paper presents the details of the novel approach to studying spot-weld fatigue characterization using XFEMs to simulate crack propagation.

Funder

American University of the Middle East, Kuwait

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3